主题颜色

爆炸与防爆

前言(1

爆炸是物质的一种非常急剧的物理、化学变化,在变化过程中,伴有物质所含能量的快速转变,即变为该物质本身、变化产物或周围介质的压缩能和运动能。其重要特征是大量能量在有限的时间里突然释放或急剧转化,这种能量能在有限的时间和有限的体积内大量积聚造成高温高压等非寻常状态,对邻近介质形成急剧的压力突跃和随后的复杂运动,显示出不寻常的移动或破坏效应。在石油、化工等行业生产过程中,从原料到成品,使用、产生的易燃易爆物质很多,一旦发生爆炸事故,常会带来非常严重的后果,造成巨大的经济损失和人员伤害,譬如泵房垮塌、油罐爆炸着火、装置报废、人员伤亡。正因如此,控制爆炸是石油、化工等行业的重中之重。要科学有效地控制气体、粉尘爆炸,就不能不对爆炸极限有一个正确的理解。
爆炸极限的定义(2

可燃性气体或蒸气与助燃性气体的均匀混合系在标准测试条件下引起爆炸的浓度极限值,称为爆炸极限。助燃性气体可以是空气、氧气或辅助性气体。一般情况提及的爆炸极限是指可燃气体或蒸气在空气中的浓度极限,能够引起爆炸的可燃气体的最低含量称为爆炸下限Low Explosion - LevelLEL),最高浓度Upper Explosion - Level称为爆炸上限(UEL

影响爆炸极限的因素(3

1 可燃气体

1.1
混合系的组分不同,爆炸极限也不同。

1.2
同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等都能使爆炸极限发生变化。

a.
温度影响

因为化学反应与温度有很大的关系,所以,爆炸极限数据必定与混合物规定的初始温度有关。初始温度越高,引起的反应越容易传播。一般规律是,混合系原始温度升高,则爆炸极限范围增大即下限降低,上限增高。但是,目前,还没有大量的系统实验结果。因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。初始温度对混合物爆炸极限的影响示例见表1

1 初如温度对混合物爆炸极限的影响示例

可燃物

混合物温度

(℃)

爆炸下限

%

爆炸上限

%

丙酮

0

50

100

4.2

4.0

3.2

8.0

9.8

10.0

煤气

20

100

200

6.00

5.45

5.05

13.4

13.5

13.8

b.压力影响

系统压力增高,爆炸极限范围也扩大,明显体现在爆炸上限的提高。这是由于压力升高,使分子间的距离更为接近,碰撞几率增高,使燃烧反应更容易进行,爆炸极限范围扩大,特别是爆炸上限明显提高。压力减小,则爆炸极限范围缩小,当压力降至一定值时,其上限与下限重合,此时的压力称为为混合系的临界压力,低于临界压力,系统不爆炸。以甲烷为例说明压力对爆炸极限的影响(见表2)。

2 压力对爆炸极限的影响(以甲烷为例)

初始压力

Pa

爆炸下限

%

爆炸上限

%

9.8×104

9.8×105

4.9×106

1.2×107

5.6

5.9

5.4

5.7

14.3

17.2

29.4

45.7

c.惰性气体含量影响

混合系中惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值时,混合系就不能爆炸。

惰性气体种类不同,对爆炸极限的影响也不同。以汽油为例,其爆炸极限范围按氮气、燃烧废气、二氧化碳、氟利昂21、氟利昂12、氟利昂11顺序依次缩小。

d.
容器、管径影响

容器、管子直径越小,则爆炸范围越小,当管径小到一定程度时,单位体积火焰所对应的固体冷却表面散发出的热量就会大于产生的热量,火焰便会中断熄灭。火焰不能传播的最大管径称为临界直径。

容器材料也有很大影响,如氢和氟在玻璃器皿中混合,即使在液态空气温度下,置于黑暗处仍可发生爆炸,而在银器中,在一般温度下才能发生爆炸反应。

e.
点火强度影响

点火能的强度高,燃烧自发传播的浓度范围也就越宽。尤其是爆炸上限向可燃气含量较高的方向移动。如甲烷在100V电压、1A电流火花作用下,无论何种混合比例情况均不爆炸;若电流增加到2A,其爆炸极限为5.9%-13.6%;电流上繁荣昌盛到3A时,其爆炸极限为5.85%-14.8%

f.
干湿度影响

通常可燃气与空气混合物的相对湿度对于爆炸宽度影响虽小,但在极度干燥时,爆炸范围宽度为最大。

爆炸极限的计算(4

1 根据化学理论体积分数近似计算

爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:

L
≈0.55c0

式中 0.55——常数;

c0——
爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定

c0=20.9/
0.209+n0

式中 n0——可燃气体完全燃烧时所需氧分子数。

如甲烷燃烧时,其反应式为

CH4+2O2→CO2+2H2O

此时n0=2

L=0.55×20.9/0.209+2=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%

2
对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算

目前,比较认可的计算方法有两种:

2.1
·夏特尔定律

对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则:

LEL=
P1+P2+P3/P1/LEL1+P2/LEL2+P3/LEL3 V%

混合可燃气爆炸上限:

UEL=
P1+P2+P3/P1/UEL1+P2/UEL2+P3/UEL3 V%

此定律一直被证明是有效的。

2.2
·查特里公式

·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/
V1/L1+V2/L2+……+Vn/Ln

式中Lm——混合气体爆炸极限,%

L1
L2L3——混合气体中各组分的爆炸极限,%

V1
V2V3——各组分在混合气体中的体积分数,%

例如:一天然气组成如下:甲烷80%L=5.0%)、乙烷15%L=3.22%)、丙烷4%L=2.37%)、丁烷1%L=1.86%)求爆炸下限。

Lm=100/
80/5+15/3.22+4/2.37+1/1.86=4.369

3
可燃粉尘

许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。

碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算:

c×Q=k

式中c——爆炸下限浓度;

Q——
该物质每靡尔的燃烧热或每克的燃烧热;

k——
常数。
超过爆炸极限的危险性(5

超过爆炸极限可能产生的危险,许多资料都是这样描述的:超过爆炸下限则可燃气或蒸气就既不爆炸也不着火;超过爆炸上限也是如此。从发生机理上讲,爆炸是在经历气体受热、发生燃烧并在特殊情形下发生爆炸。由此来看,上述将爆炸极限与燃烧极限混为一谈是不严密的,因为,这里面涉及一个燃烧极限问题。超过爆炸极限不再发生爆炸显然是正确的,但是,在具别情况下,不发生爆炸但仍可能发生燃烧。只是这个爆炸极限与燃烧极限的差值一般很小,在很多情况下可以视为等值,但不应视为等值,从而一概把超过爆炸极限的危险状况认定为既不爆炸也不燃烧的安全状况。利用这一原理,可以在燃烧情况下进行带压不置换动火,从而省时省力。

爆炸控制(6

由于爆炸造成的后果大多非常严重,在化工生产作业中,爆炸压力的作用和火灾的蔓延,不仅会使生产设备遭受损失,而且使建筑破坏,甚至致人死亡。因此,科学防爆是非常重要的一项工作。

防止爆炸的一般原则是:一是控制混合气体的组分处在爆炸极限以外;二是使用惰性气体取代空气;三是使氧气浓度处于其极限值以下。为此应防止可燃气向空气中泄漏,或防止空气进入可燃气体中;控制、监视混合气体组分浓度;装设气体组分接近危险范围的报警装置。

防止爆炸的具体措施主要有以下几点:

1
惰性介质保护

由于爆炸的形成需要有可燃物质和氧气,以及一定的点火能量。利用惰性气体取代空气中的氧气,就消除了引发爆炸的一大因素,从而使爆炸过程无法完成。在化工生产中,采取的惰化气体主要用氮气、二氧化碳、水蒸气、烟道气等。

1.1
易燃固体物质的粉碎、筛选处理及其粉末输送时,采用惰性气体进行覆盖保护。

1.2
处理可燃易爆的物料系统,在进料前,用惰性气体进行置换,以排除系统中原有的气体,防止形成爆炸性混合物。

1.3
将惰性气体通过管线与有火灾爆炸危险的设备、贮槽等连接起来,在万一发生危险时使用。

1.4
易燃液体利用惰性气体充压输送。

1.5
在有爆炸性危险的生产场所,对有引起火灾危险的电器、仪表等采用充氮正压保护。

1.6
易燃易爆系统检修动火前,使用惰性气体进行吹扫置换。

1.7
发现易燃易爆气体泄漏时,采用惰性气体(水蒸气)冲淡。发生火灾时,用惰性气体进行灭火。

2
系统密闭和负压操作

2.1
为防止易燃气体、蒸气或可燃性粉尘与空气形成爆炸性混合物,应设法使设备密闭。为了保证设备的密闭性,对危险设备及系统应尽量少用法兰连接,但要保证安全检修的方便。

2.2
为防止有毒或爆炸性危险气体向器外逸散,可以采用负压操作系统。对于在负压操作下生产的设备,应防止空气吸入。

3
通风置换

通过通风可以有效防止易燃易爆气体积取并达到爆炸极限。排除有燃烧爆炸危险粉尘的排风系统,应采用不产生火花的除尘器。含有爆炸性粉尘的空气,在进入风机前,应进行净化。

4
阻止容器或室内爆炸的安全措施

4.1
抗爆容器

对已知的爆炸结果作系统的评定表明,在符合一定结构要求的前提下,即使容器和设备没有附加防护措施,也能承受一定的爆炸压力。如果选择这种结构形式的设备在剧烈爆炸情况下没有被炸碎,而只产生部分变形,那么设备的操作人员就可以安然无恙,这也就达到了最重要的防护目的。

由于这一方法的成本很高,而且,与相关设备的安全可靠性判别太大,因此,在生产实践中很少用到,非特别危险或发生事故造成严重后果的装置不采用。

4.2
爆炸卸压

通过固定的开口及时进行卸压,则容器内部就不会产生不可容纳的高爆炸压力,因而也就不必使用能抗这种高压的结构,把没有燃烧的混合物和燃烧的气体排放到大气里去,就可把爆炸压力限制在容器材料强度所能承受的某一数值。卸压装置可分为一次性(如爆破膜)和重复使用的装置(如安全阀)。

4.3
房间卸压

主要是用来保护容器和装置的,它能使被保护设备不被炸毁和使用人员不受伤害。也可用卸压措施来保护房间,但不能保护房间里的人。这种情况下,房间里的设备必须是遥控的,并在运行期间严禁人员进入房间。一般可以通过窗户、外墙和建筑物的房顶来进行卸压。

5
爆炸遏制

爆炸遏制系统由能检测初始爆炸的传感器和压力式的灭火剂罐组成,灭火剂罐通过传感装置动作。在尽可能短的时间里,把灭火剂均匀地喷射到应保护的容器里。于是,爆炸燃烧被扑灭,控制住爆炸的发生。爆炸燃烧能自行进行检测,并在停电后的一定时间里仍能继续进行工作。



爆炸遏制系统示意图

爆炸遏制系统的重要作用,就是当可燃气或粉尘爆炸时,防止容器里出现不许可的高压,从而使容器、设备免受爆炸损坏,并不会对人造成任何伤害。如果爆炸能引起有毒的或对环境有害的可燃气、蒸气或粉尘散发,那么,爆炸遏制是很重要的措施。

6
阻止管道爆炸的防护措施

6.1
阻火器

利用阻火器把可能发生的爆炸限制在一定的空间内,阻火器常用的是机械阻火器,但由于其工作面上的狭窄孔隙易附着污物,阻火器必须定期清扫,所以这类阻火器仅被用作输送可燃气或蒸气的管道里。输送易爆粉尘的管道已开始使用自动灭火剂阻火器。这种灭火剂阻火器是根据光学火焰信号器可以探测管道里的爆炸的原理而制造的。信号器发出的脉冲经过放大器后很快打开由雷管启动的灭火剂贮罐活门,从而使喷出的灭火剂畅通地到达管道的内部,切断粉尘爆炸的传播。

6.2
管道卸压

一是装爆破膜。管道发生的爆炸压力使爆破膜破裂,从而使管道卸压。为了能使管道在最恰当的时机泄压,防止爆轰的形成,现在已经发展应用外部控制式阻火器。

二是装防爆瓣阀。这是一种具有一定重量的能自动闭合的卸压装置。当爆炸或爆轰发生时,防爆瓣阀能够打开管端的排气口,接着再重新关闭,并尽可能地密封。

管道上应用上述卸压装置时,要特别慎重。因为卸压动作会引起爆炸速度和爆炸压力的上升,所以对管端卸压装置的功能和机械强度的要求是很高的。使用管端卸压装置要防止管端随时遭到破坏(终端法兰、弯头、支管)。

6.3
快速关闭装置

这种装置近似一个在一定的爆炸压力下,能够自动动作紧急切断管线物料的阀门。它可以阻止与管道连接的容器出现超高压力上升,并能防止爆炸从防护部位往没有防护的部位传播。

结束语(7

正确认识爆炸极限对防爆工作非常重要。在易燃易爆场所的作业工人及安全工作者必须对其数据的由来及影响因素有一个全面正确的认识,从而准确把握,特别是对一些特殊情况能够预见到超乎常规的危险,做出正确的行动。在严格规范管理的同时,要跟踪科学技术的发展,运用最先进的技术手段,来有效防范爆炸事故的发生。

感动 同情 无聊 愤怒 搞笑 难过 高兴 路过

责任编辑 :内测2 (易 安 网 版 权 所 有 ,未 经 授 权 禁 止 使 用 ,不 能 转 载 ! )

分享按钮