一、事故概况
二、事故原因分析
1、原始设计数据和现场检查
1 )该球罐的工艺参数为设计压力:3.06MPa;设计温度:常温;使用介质:氮气;容器类别:二类;容积:400m3 。
2 )该球罐顶部设有一个直径为500mm的人孔,人孔盖为椭圆型封头结构,盖顶部开孔并与一108×5mm钢管相焊接,管的另一端与Z41H型DN100的截止阀法兰连接,截止阀的另一端与一根90°弯管连接,放空管总高约3m。
3 )管件的断裂部位在人孔与管子的角焊缝热影响区。事故发生时,DN100截止阀的开启度为60mm左右,超过了阀门公称直径的一半。管件断裂飞出的方向, 与 90°弯管排气的方向正好相反。
2、技术鉴定
1 )竣工资料审查 经查有关的技术文件,人孔盖封头与放空管组焊件均经检验合格出厂,其中人孔盖封头与接管焊接均符合国家有关压力容器安全技术标准的规定。
2 )接管焊接结构检查 经检查接管与封头焊接是插入式结构,按设计图样要求封头内外均开坡口,为全焊透焊接结构。封头内表面焊缝宽均为15mm,焊高为 5mm;外表面为角焊缝,焊高为6mm;其接管长度约为100mm,另一端与高颈法兰焊接。
3 )接管断口检查 封头侧断口边缘距角焊缝顶部距离为2~20mm,断口大部分成45°倾角,管子侧断口存在明显的塑性变形,内径最大值103mm,最小值92mm,其径向变形量为11mm,断口顶部截面厚度为2.5~5.1mm,呈波浪形,并有不规则缺口两个。
4)接管焊缝无损检测 经对封头与接管的内外角焊缝表面进行磁粉探伤和着色探伤,未发现表面裂纹及其它缺陷。对接管壁厚进行测定 ,除断口附近变形区域外壁厚均为4.9~5.2mm,故可认定接管壁厚为5mm。
5)管材化学成分分析和机械性能试验 经取样复验,管子化学成分和机械性能均符合GB3087-82《低中压锅炉用无缝钢管》标准的要求。
6)管子断口金相分析 经微观金相检查,其显微组织为铁素体+珠光体,非金属夹杂物为1级,晶粒度级别6~8级,基本符合材料标准要求。经分析,断口沿边缘部位组织变形明显,并产生与变形方向相同的二次裂纹,其断口的变形部位硬度为HV240~248,平均值为HV245,其基体的未变形部位硬度为 HV183~186。
技术鉴定表明:放空管与封头出厂资料齐全,符合国家有关技术标准的规定,选材及尺寸复验均符合设计图样要求,结构角焊缝经表面探伤检查未发现超标缺陷。但断口宏观检查表明,断口呈灰暗色,塑性变形严重;微观金相检查也表明,断口边缘部分组织滑移较为明显。因此 ,可认定这是一起典型的塑性破裂事故。
3、受力分析
根据工程材料力学的理论分析,该球罐顶部的放空管部件是一个典型的悬臂梁结构 ,在排放氮气时,流体在出口处突然转角90°,从而使流体的横向冲力与放空管总长(力臂)构成一个力矩,而构件的最大弯矩正好在放空管与人孔盖封头的结合部。流体在排放时,对管件形成的最大弯矩与阀门的开启度及出口弯管的角度有关。这就要求排空操作时,操作人员应严格遵守操作规程,把握好阀门开启度的大小,同时要求在设计时尽量避免 90°弯管,以保证操作安全。
三、事故结论
该球罐顶部放空管断裂事故的原因是:由于在检修时 ,放空管阀门短时间内一次性开启过大,致使放空管与人孔盖连接处承载过大,导致管壁上的平均应力超过了管材的屈服极限和强度极限,因而造成连接处 (管壁上)的塑性断裂破坏。因此,管子的断裂是与短时间内阀门开启过大和结构设计不合理有关。
四、几点建议
压力容器顶部的放空管是按设备工艺要求和为制造、安装及检修、试验而设置的排气装置。在加强对压力容器主要受压元件安全管理的同时,不可忽视对放空装置的安全要求。这一次放空管突然断裂事故,应引起我们的高度重视。笔者提出以下几点建议供同行参考:
1 )压力容器的操作工应认真执行安全操作规程,加强安全意识。在放空操作时,万不可将阀门在短时间内一次性开启过大,开启度最好不要超过阀门公称直径的 1/3,并做到小心缓慢泄压。
2 )放空结构设计应尽量避免气流出口处采用90°弯管,可选用120°~135°,以减少流体的横向冲力。考虑到排气时底部承受的弯矩载荷较大,建议选用厚壁钢管。另外为了增加该结构的稳定性,应在设计上考虑整体加固措施,防止排气振动过大。
3 )在制造安装时,须严格执行国家有关压力容器的法规和技术标准,严格施工纪律,防止放空管用材错误并消除因焊接而造成的缺陷。
4)在压力容器日常外观检查及定期内外部检验时,应加强对该部件的安全检查,重点是相应的焊缝及其母材处是否存在表面疲劳裂纹及变形泄漏,一旦发现应及时修复处理。
分享按钮责任编辑 :老芋头 (易 安 网 版 权 所 有 ,未 经 授 权 禁 止 使 用 ,不 能 转 载 ! )
2013 ©易安网. ALL Rights Reserved. 京ICP备11028188号 | 京公网安备11010502022994